

Michigan Wheel Marine 🐝

ty lorg Propellers

Michigan Wheel manufactures propellers with particular emphasis on tolerance specifications.

> Each Propeller meets exacting tolerances, and is fully inspected.

WHAT WE DO

QUALITY.

Michigan Wheel Marine is committed to the pursuit of quality excellence. We have ongoing training for all of our personnel and suppliers. Engineering support is continually upgraded. Through this effort, we seek to continually reduce product and process variation. Michigan Wheel operates on the philosophy that quality is the cornerstone of economic growth and stability. Therefore, quality is the responsibility of every individual in our organization. With the cooperation and input from our suppliers and customers, we are commited to continuous improvement.

ENGINEERING.

With decades of experience as the Marine Propulsion Industry Leader, the Engineering Department at Michigan Wheel and select Michigan Distributors have the knowledge and experience to suggest propellers for your boat. Our Naval Architects, Engineers, and many of our Distributors are available to review your vessel data and your performance expectations. Specialized proprietary software programs can determine the best propeller match, in size and style, for your boat's engine and gear ratio combination.

WHO WE ARE

Since 1903, Michigan Wheel Marine has been the world leader in propulsion and marine manueverability systems. We are the go-to propeller supplier to custom yacht manufacturers, production boat builders, commercial shipyards and goverments around the world. For those that seek to optimize performance and efficiency, Michigan Wheel has the expansive propeller design and analysis capabilities to increase speeds, improve cruising range, and provide exceptional passenger comfort levels.

TABLE OF CONTENTS

Michigan Propellers	04
Pleasure Boat Propellers	06
Sailboat Propellers	10
Mud Boat Propellers	11
Commercial Propellers	12
Federal Propellers	18
Marlin Series	22
"Y" Series	23
"CX" Series	24
"HX" / "X" / Equi-Poise & Equi-Quad	25
HyTorq Propellers	26
MY-T Series	28
Company History	30
Manufacturing Process	32
Propeller Terms & Definitions	34
Inboard Propeller Installation Process	36
Marine Propeller Shaft End Dimensions	37
Prop-It-Right Analysis Form	38

For those that seek to optimize performance and efficiency, Michigan Wheel has the expansive propeller design and analysis capabilities to increase speeds, improve cruising range, and provide exceptional passenger comfort levels.

MICHIGAN PROPELLERS

-

Photo Courtesy of Hatteras Yachts

A Michigan propeters

Photo Courtesy of Tiara Yachts

"X" SERIES

The "DJX" and "DQX" are evolutions of the classic Dyna-Jet and Dyna-Quad propeller designs, respectively, and are more closely optimized for modern marine craft. "X" Series propellers are the benchmark standard for high quality, performance-oriented propellers.

DJX

DQX

DQX

Specifications 0.61 E.A.R. Diameter Range: 12" - 21" 21° of Skew

Specifications 0.835 E.A.R. Diameter Range: 17" - 22" 21° of Skew

Specifications 0.935 E.A.R. Diameter Range: 23" - 32" 21° of Skew

All "X" Series propellers are designed to efficiently use the higher engine power boating production by modern boat engines, both gas and diesel. With higher blade areas, the "X" propellers can better convert extra power into additional thrust. The increased blade area and refined blade chord distributions help minimize vibration for common high horsepower, limited tip-clearance applications. All "X" Series propellers are manufactured utilizing modern CNC machine finishing technology. This results in high quality propellers meeting stringent tolerance requirements at competitive prices.

Michigan Wheel offers a 4-blade DQX, which will result in smoother operation when compared to a 3-blade DJX. As boat size increases, larger engines will require the DQX to maximize thrust potential. Michigan Wheel also offers a 4-blade DQX with extra blade area (0.81 E.A.R.). This propeller can excel on performance applications where the propulsion system must accommodate various combinations of high engine power, propeller diameter constraints, and high boat speed.

DJX SPECIFICATIONS (0.61 E.A.R.) DIAMETER STANDARD TAPER BORE (INCHES) Expanded Area Per Blade HUB DIMENSIONS (INCHES) Maximum Blade Width (Inches) Approx. Net Weight (lbs.) *WR² (LBS.-IN²) MM INCHES AFT END FORWARD END LENGTH MINIMUM BORE MAXIMUM BORE PILOT BORE (sq.in) 305 1-5/8 1-3/4 2-3/8 7/8 1-1/8 7/8 5-7/16 5 41 12 22.7 7/8 1-5/8 1-7/8 2-3/4 1-1/8 26.8 6 61 13 330 7/8 6 14 356 1-7/8 2 2-3/4 1 1-1/4 1 6-1/2 31 8 90 1-7/8 2 2-3/4 1-1/4 6-7/8 35.8 10 126 15 381 1 1 16 406 2-1/8 2-3/8 3-1/4 1-1/8 1-1/2 1-1/8 7-3/8 40.5 12 172 17 432 2-1/4 2-1/2 3-1/4 1-1/4 1-1/2 1-1/4 7-7/8 45.4 14 232 18 457 2-3/8 2-5/8 3-3/4 1-1/4 1-3/4 1-1/4 8-5/16 51.3 16 307 19 483 2-3/8 2-5/8 3-3/4 1-1/4 1-3/4 1-1/4 8-3/4 57.3 19 401 20 508 2-3/8 2-5/8 3-3/4 1-1/4 2 1-1/4 9-1/4 63.8 21 516 21 533 2-3/4 3 4-1/8 1-3/8 2 1-3/8 9-3/4 69.9 26 660

*WR2 = ±10% in Air (inch squared lbs.)

M.W.R. = 0.37

B.T.F. = 0.048

	DQX SPECIFICATIONS (0.735 E.A.R.)													
Diam	ETER	Hu	B DIMENSIONS (INCH	ES)	Stand	oard Taper Bore (I	NCHES)	Махімим						
INCHES	MM	AFT END	FORWARD END	Length	MINIMUM BORE	MAXIMUM BORE	PILOT BORE	Blade Width (Inches)	Area Per Blade (sq.in)	Approx. Net Weight (lbs.)	*WR ² (LBSIN ²)			
17	432	2-1/4	2-1/2	3-1/4	1-1/4	1-1/2	1-1/4	7-3/16	41.4	16	279			
18	457	2-3/8	2-5/8	3-1/4	1-1/4	1-3/4	1-1/4	7-5/8	46.4	18	370			
19	483	2-3/8	2-5/8	3-3/4	1-1/4	1-3/4	1-1/4	8	51.9	21	482			
20	508	2-3/8	2-5/8	3-3/4	1-1/4	1-3/4	1-1/4	8-7/16	57.7	24	621			
21	533	2-3/4	3	4-1/8	1-3/8	2	1-3/8	8-7/8	63.2	29	794			
22	559	2-3/4	3	4-1/8	1-3/8	2	1-3/8	9-5/16	69.6	33	997			
*WR2 = ±10% i	n Air (inch squar	ed lbs.)	M.W.R. = 0.	33	B.T.F	= 0.046								

				DQX SF	PECIFICATIO	оля (0.81	E.A.R.)				
Diam	IETER	Hυ	B DIMENSIONS (INC)	ies)	Stand	ard Taper Bore (I	NCHES)	Махімим	Expanded Area Per	Approx. Net	
INCHES	MM	AFT END	FORWARD END	Length	MINIMUM BORE	MAXIMUM BORE	PILOT BORE	Blade Width (Inches)	BLADE (SQ.IN)	WEIGHT (LBS.)	*WR ² (lbsin ²)
23	406	3	3-1/4	Full Taper	1-1/2	2	1-1/2	10-5/8	83.7	45	1,392
24	432	3	3-1/4	Full Taper	1-1/2	2	1-1/2	11-1/16	91.4	50	1,714
25	457	3-3/8	3-3/4	Full Taper	1-3/4	2-1/4	1-3/4	11-9/16	98.6	60	2,111
26	483	3-3/8	3-3/4	Full Taper	1-3/4	2-1/4	1-3/4	12	106.9	65	2,557
27	508	3-3/4	4-1/8	Full Taper	2	2-1/2	2	12-1/2	114.8	77	3,099
28	533	3-3/4	4-1/8	Full Taper	2	2-1/2	2	12-15/16	123.8	83	3,700
30	559	4-1/4	4-5/8	Full Taper	2	3	2	13-7/8	141.5	110	5,240
32	584	4-1/4	4-5/8	Full Taper	2	3	2	14-3/4	161.8	126	7,176

*WR2 = $\pm 10\%$ in Air (inch squared lbs.)

M.W.R. = 0.37 B.T.F. = 0.046

Photo Courtesy of Sea Ray Corporation

Photo Courtesy of Tiara Yachts

Photo Courtesy of Silverton Marine Corp.

Photo Courtesy of Silverton Corp.

Available Alloys

BR

Designed for the pleasure craft owner who looks for the ultimate performance and speed. The Dyna-Jet and Dyna-Quad are the most popular propeller series in the world for pleasure boat applications.

DYNA-JET

Specifications 0.56 E.A.R. Diameter Range: 9" - 46" Pitch Range: 0.7 - 1.1 (Pitch/Diameter Ratio)

The 3-blade Dyna-Jet provides outstanding speed and performance for moderatelysized boats. It has been the most popular propeller in the world for the past 50 years, and is still a standard for many 3-blade uses. Each Dyna-Jet is carefully hand-crafted and inspected to meet today's performance demands.

DYNA-QUAD

Specifications 0.69 E.A.R. Diameter Range: 17" - 46" Pitch Range: 0.7 - 1.1 (Pitch/Diameter Ratio)

As popular as the Dyna-Jet model, the Dyna-Quad may offer a more comfortable ride, reducing the vibrations of a 3-blade, while providing more thrust via greater blade area. This makes the Dyna-Quad an excellent choice for the performance-minded commercial boat operator.

M-500

Specifications

0.89 E.A.R. Diameter Range: 22" - 46" Pitch Range: 0.75 - 1.3 (Pitch/Diameter Ratio)

For new construction, re-powers, and upgrading propellers, the 5-blade M-500 is the right choice. Its excellent design and increased blade area provide superior performance without increasing diameter, and may be the solution to problems such as: clearance or tip speed considerations; heavy vee-struts, dead wood or other hull appendages agitating the flow of water; vibration caused by resonance.

	DYNA-	Jet & I	DYNA-G		PECIFIC	ATIONS	3	ΟΥΝΑ	-Jet (0	.56 E./	4.R.)	D ΥΝΑ-	QUAD (0.69 E	.A.R.
Dian	ETER	Нив [DIMENSIONS (IN	ICHES)	Standari	D TAPER BORE	(INCHES)	Махімим		Approx.	*14/D2	Махімим		APPROX.	+\A/D
NCHES	MM	AFT END	Forward End	Length	Minimum Bore	Maximum Bore	Pilot Bore	Blade Width (Inches)	Area Per Blade (sq.in)	Net Weight (lbs.)	*WR ² (LBSIN ²)	Blade Width (Inches)	Area Per Blade (sq.in)	Net Weight (lbs.)	*WR (LBSIN
9	229	1-3/8	1-1/2	2-1/8	3/4	7/8	3/4	3-7/8	11.7	2.5	10	-	-	-	-
10	254	1-1/2	1-5/8	2-1/4	3/4	1	3/4	4-5/16	14.5	3	17	-	-	-	-
11	279	1-1/2	1-5/8	2-1/4	3/4	1	3/4	4-3/4	17.7	4	26	-	-	-	-
12	305	1-5/8	1-3/4	2-3/8	7/8	1-1/8	7/8	5-3/16	21.1	5	40	-	-	-	-
13	330	1-5/8	1-13/16	2-3/4	1	1-1/4	1	5-5/8	24.8	6	60	-	-	-	-
14	356	1-7/8	2	2-3/4	1	1-1/4	1	6	28.7	8	86	-	-	-	-
15	381	1-7/8	2	2-3/4	1	1-1/4	1	6-7/16	33.1	9	120	-	-	-	-
16	406	2-1/8	2-3/8	3-1/4	1-1/8	1-3/8	1-1/8	6-7/8	37.5	11	167	-	-	-	-
17	432	2-1/8	2-3/8	3-1/4	1-1/4	1-3/8	1-1/4	7-5/16	42.8	13	224	6-3/4	38.7	14	25
17**	432	2-3/8	2-5/8	3-3/4	1-1/4	1-1/2	1-1/4	7-5/16	42.8	13	224	-	-	-	-
18	457	2-3/8	2-5/8	3-3/4	1-1/4	1-1/2	1-1/4	7-3/4	47.4	16	298	7-1/8	43.2	17	34
19	483	2-3/8	2-5/8	3-3/4	1-1/4	1-1/2	1-1/4	8-3/16	53.1	18	388	7-1/2	48.3	20	44
20	508	2-3/8	2-5/8	3-3/4	1-1/4	1-1/2	1-1/4	8-5/8	59.0	20	500	7-15/16	53.7	23	57
21	533	2-3/4	3	4-1/8	1-3/8	1-3/4	1-3/8	9-1/16	64.6	25	640	8-5/16	58.8	28	73
22	559	2-3/4	3	4-1/8	1-3/8	1-3/4	1-3/8	9-1/2	71.2	28	803	8-11/16	64.8	31	92
23	584	3	3-1/4	4-1/2	1-1/2	2	1-1/2	9-7/8	77.6	33	1,004	9-1/16	70.6	36	1,1
24	610	3	3-1/4	4-1/2	1-1/2	2	1-1/2	10-3/8	84.7	36	1,237	9-1/2	77.1	40	1,2
26	660	3-3/8	3-3/4	4-7/8	1-3/4	2-1/4	1-3/4	11-1/4	99.1	46	1,844	10-1/4	90.2	52	2,1
28	711	3-3/4	4-1/8	5-3/4	2	2-1/2	2	12-1/16	114.7	60	2,671	11-1/16	104.4	66	3,0
30	762	4-1/4	4-5/8	6	2	3	2	12-15/16	131.1	76	3,775	11-7/8	119.3	84	4,3
32	813	4-1/4	4-5/8	6	2	3	2	13-3/4	150.0	88	5,172	12-5/8	136.5	97	5,9
34	864	4-1/4	4-5/8	6-1/2	2-1/4	3	2-1/4	14-5/8	170.0	101	6,973	13-7/16	154.7	112	7,9
36	914	4-5/8	5-1/8	8	2-3/4	3-1/2	2-3/4	15-1/2	190.1	124	9,289	14-1/4	173.0	138	10,6
38	965	4-5/8	5-1/8	8	2-3/4	3-1/2	2-3/4	16-3/8	212.7	140	12,108	15	193.5	156	13,8
40	1,016	5	5-1/2	9	3	3-3/4	3	17-1/4	235.3	168	15,646	15-13/16	214.1	186	17,8
42	1,067	5-3/8	6	10-7/16	3	4	3	18-1/8	258.8	205	20,016	16-5/8	235.5	226	22,8
44	1,118	5-7/16	6-3/16	11	3	4	3	19	284.5	233	25,187	17-3/8	258.9	258	28,7
46	1,168	5-5/8	6-1/4	11-7/8	3	4	3	19-7/8	311.5	266	31,385	18-3/16	283.5	293	35,3

** Sizes (Dia. x Pitch) 17x16, 17x17 & 17x18 maximum bore is 1-1/2". All other 17" diameter x available pitch - maximum bore is 1-3/8". See hub dimensions for hub size detail. *WR2 = ±10% in Air (inch squared lbs.)

For Dyna-Jet	M.W.R. = 0.33	B.T.F. = 0.050
For Dyna-Quad	M.W.R. = 0.33	B.T.F. = 0.047

				M-500 S	PECIFICAT	IONS (0.86	6 E.A.R.))			
Diam	ETER	Hu	B DIMENSIONS (INC)	ies)	Stand	ard Taper Bore (I	NCHES)	Махімим			
INCHES	MM	AFT END	FORWARD END	Length	MINIMUM BORE	MAXIMUM BORE	PILOT BORE	Blade Width (Inches)	Area Per Blade (sq.in)	Approx. Net Weight (lbs.)	*WR ² (LBSIN ²)
22	356	2-3/4	3	4-1/8	1-3/8	1-3/4	1-3/8	8-11/16	64.9	37	1,150
23	381	3	3-1/4	4-1/2	1-1/2	2	1-1/2	9-1/16	70.6	43	1,430
24	406	3	3-1/4	4-1/2	1-1/2	2	1-1/2	9-1/2	77.1	48	1,770
26	432	3-3/8	3-3/4	4-7/8	1-3/4	2-1/4	1-3/4	10-1/2	90.2	62	2,630
28	457	3-3/4	4-1/8	5-3/4	2	2-1/2	2	11-1/16	104.4	79	3,810
30	483	4-1/4	4-5/8	6	2	3	2	11-7/8	119.3	99	5,380
32	508	4-1/4	4-5/8	6	2	3	2	12-5/8	136.5	115	7,380
34	533	4-1/4	4-5/8	6-1/2	2-1/4	3	2-1/4	13-7/16	154.7	134	9,960
36	559	4-5/8	5-1/8	8	2-3/4	3-1/2	2-3/4	14-1/4	173.0	164	13,250
38	584	4-5/8	5-1/8	8	2-3/4	3-1/2	2-3/4	15	193.5	186	17,280
40	610	5	5-1/2	9	3	3-3/4	3	15-7/8	214.1	221	22,320
42	660	5-3/8	6	10-7/16	3	4	3	16-9/16	235.5	267	28,520
44	711	5-7/16	6-3/16	11	3	4	3	17-3/8	258.9	305	35,900
46	762	5-5/8	6-1/4	11-7/8	3	4	3	18-3/16	283.5	347	44,740
*WR2 = +10%	in Air (inch so	uared lbs.)		MWR = 0.3	7	BTF =	0.046				

*WR2 = $\pm 10\%$ in Air (inch squared lbs.)

M.W.R. = 0.37

B.T.F. = 0.046

SAILBOAT PROPELLERS

Available Alloys

Michigan fixed pitch propellers are designed to produce performance - with or without wind.

SAILER 2-BLADE Specifications 0.31 E.A.R. Diameter Range: 10" - 20"

The 2-Blade Sailer fixed pitch propeller is the popular choice for sailboaters seeking to maximize speed. It offers minimum drag while under sail and the power to get you where you're going when the wind stops blowing.

SAILER 3-BLADE Specifications 0.46 E.A.R.

Diameter Range: 10" - 20"

The 3-Blade Sailer is the propeller of choice for the cruising sailboats. It offers superior dock handling maneuverability and the power to maintain speed in wind and waves when the weather gets nasty with a minimum increase in drag under sail.

			Sailer 2 & 3	BLADE SPECIFICAT	ΓIONS		
Dian	METER		HUB DIMENSIONS (INCHES)		S	Standard Taper Bore (Inche	s)
INCHES	ММ	AFT END	Forward End	Length	Maximum Straight Bore (Inches)	Maximum Blade Width (Inches)	Expanded Area Per Blade (sq.in)
10	254	1-7/16	1-5/8	2-1/4	3/4	7/8	3/4
11	280	1-7/16	1-5/8	2-1/4	3/4	7/8	3/4
12	305	1-9/16	1-3/4	2-3/8	1	1-1/8	1
13	330	1-9/16	1-3/4	2-3/4	1	1-1/8	1
14	356	1-3/4	2	2-3/4	1	1-1/8	1
15	381	1-3/4	2	2-3/4	1	1-1/8	1
16	406	1-15/16	2-3/16	3-1/4	1-1/8	1-1/4	1-1/8
17	432	2	2-5/16	3-1/4	1-1/8	1-3/8	1-1/8
18	457	2	2-5/16	3-1/4	1-1/8	1-3/8	1-1/8
19	483	2-1/8	2-7/16	3-3/4	1-1/4	1-3/8	1-1/4
20	508	2-1/8	2-7/16	3-3/4	1-1/4	1-3/8	1-1/4

MUD BOAT PROPELLERS

	WEEDLESS A-C SPECIFICATIONS													
Diam	IETER		F	UB DIMENSIONS (INCHE	s)	Махімим	MAXIMUM BLADE	EXPANDED AREA						
INCHES	MM	Available Pitch	AFT END	FORWARD END	Length	Straight Bore (Inches)	WIDTH (INCHES)	Per Blade (sq.in)	Approx. Net Weight (lbs.)	B.T.F.				
6	152		1	1-11/32	1-3/8	1/2	2-5/8	6.2	1	.042				
7	178	4L	1-1/16	1-1/2	1-1/2	5/8	3-1/8	8.5	1.5	.042				
8	203	6L	1-1/8	1-1/2	1-1/2	5/8	3-9/16	10.8	2	.042				
9	229	6L, 7L, 8L	1-1/4	1-11/16	1-7/8	3/4	4-1/8	13.7	3	.042				
10	254	6L, 10L	1-7/16	1-3/4	2-1/4	3/4	4-11/16	14.7	3.5	.042				

				WEEDLES	ss W-C	Specifications				
Diam	ETER		Hυ	B DIMENSIONS (INCH	ies)	Maximum Straight Bore	Maximum Blade	EXPANDED AREA PER	APPROX. NET	
INCHES	MM	Available Pitch	AFT END	FORWARD END	LENGTH	(Inches)	BLADE WIDTH (INCHES)	BLADE (SQ.IN)	WEIGHT (LBS.)	B.T.F.
6	152	4L, 5L	1	1-11/32	1-3/8	1/2" Straight No Keyway	2-5/8	6.2	1	.042
7	178	4L, 5L, 8L, 10L	1-1/16	1-1/2	1-1/2	1/2" Straight No Keyway	3-1/8	8.5	1.5	.042
8	203	4L, 5L	1-1/8	1-1/2	1-1/2	5/8" Straight No Keyway	3-9/16	10.8	2	.042
9	229	5L, 6L	1-1/4	1-11/16	1-7/8	5/8" or 3/4" Straight & Slot	4-1/8	13.7	3	.042
10	254	5L, 9L	1-7/16	1-3/4	2-1/4	3/4" Taper & Keyway	4-11/16	14.7	3.5	.042

			WEED	less H-	D Speci	FICATIONS	3				
Diam	IETER		Нив	DIMENSIONS (INC	HES)	Maximum Standard	Maximum Straight	Maximum Blade	Expanded Area Per	Approx.	
INCHES	MM	Available Pitch	AFT END	Forward End	Length	TAPER BORE (INCHES)	BORE (INCHES)	WIDTH (INCHES)	BLADE (SQ.IN)	NET WEIGHT (LBS.)	B.T.F.
10	254	6R, 8, 10, 12	1-7/16	1-5/8	2-1/4	1	1	6-11/16	21	5	.058
11	279	8, 10, 12	1-7/16	1-5/8	2-1/4	1	1	7-7/16	25	6	.058
12	305	10, 12, 14	1-9/16	1-3/4	2-5/8	1-1/8	1-1/4	8	30	7.5	.058
13	330	8, 10, 12, 14	1-9/16	1-3/4	2-5/8	1-1/8	1-1/4	8-13/16	36	9	.058
14	356	8, 10, 12L, 14, 16	1-3/4	2	3	1-1/8	1-1/4	9-7/16	41	12	.058
15	381	8, 10, 12, 13L, 14, 16	1-3/4	2	3	1-1/8	1-1/4	10	47	14	.058
16	406	8-16 Even	1-15/16	2-3/16	3-3/8	1-1/4	1-3/8	10-11/16	55	16	.058

WEEDLESS A-C Specifications Diameter Range: 6" - 10" Straight Bore

The Weedless A-C Series is primarily for smaller air-cooled inboard engines.

WEEDLESS W-C Specifications Diameter Range: 6" - 10" Tapered Bore

The Weedless W-C Series offers heavier blades and a larger hub for water cooled engines.

WEEDLESS H-D Specifications Diameter Range: 10" - 16" Standard Taper Bores

The Weedless H-D (Heavy Duty) is designed for maximum strength and durability in weed infested waters. It is designed to take on the heaviest of weeds.

HE ZIN

COMMERCIAL BOAT PROPELLERS

Commercial propellers that are modeled after the popular Dyna-Quad pleasure series.

DQ SPECIAL

Specifications 0.76 - 0.91 E.A.R. Diameter Range: 32" - 56"

The DQ Special is an authoritative extension of the traditional Dyna-Quad design, boasting more muscle through more blade area. It is available in larger diameters, with area ratios suitable for today's highpowered vessels. It makes for an ideal option for large super yachts, as well as commercial boats operating at higher speeds.

Available Alloys

DURA-QUAD

Specifications 0.76 E.A.R. Diameter Range: 24" - 36"

The Dura-Quad is ideal for applications where more durability and/or blade area is required. Dura-Quad propellers have the skewed and highly efficient blade design of the traditional Dyna-Quad series. The added blade thickness optimizes speed on high-powered commercial applications, without sacrificing durability.

PAC-MASTER

Specifications 0.69 E.A.R. Even Diameters: 20" - 30"

Pac-Master features a durable design to ensure long running life. The increased blade-root thickness gives extra durability for any and all applications. CF3 Stainless Steel is used to ensure rugged, dependable operation. The Pac-Master is available in select even-diameters. Odddiameters and pitch combinations are available upon request. Available Alloys

- 12 -

DQ SPECIAL SPECIFICATIONS (0.86 E.A.R.) DIAMETER STANDARD TAPER BORE (INCHES) HUB DIMENSIONS (INCHES) Expanded Area Per Maximum Blade Width (Inches) APPROX. NET *WR² (LBS.-IN²) BLADE WEIGHT (LBS.) INCHES $\mathsf{M}\mathsf{M}$ AFT END FORWARD END LENGTH MINIMUM BORE MAXIMUM BORE PILOT BORE (sq.in) 4-1/4 4-7/8 2 2 8,250 32 813 FULL TAPER 3 15-11/16 173.1 128 2-1/4 3 196.3 34 864 4-1/2 5-1/8 Full Taper 2-1/4 16-11/16 152 11,150 36 914 4-7/8 5-9/16 Full Taper 2-3/4 3-1/2 2-3/4 17-11/16 219.5 184 14,850 38 4-7/8 2-3/4 2-3/4 207 965 5-9/16 FULL TAPER 3-1/2 18-5/8 245.5 19,270 40 1.016 4-7/8 5-11/16 FULL TAPER 3 3-3/4 3 19-5/8 271.6 233 24,710 42 1,067 5-3/8 6 3 4 3 20-5/8 298.8 275 Full TAPER 31,620 44 1,118 5-3/8 6 FULL TAPER 3 4-1/4 3 21-9/16 328.5 300 39,630 46 6 6-3/4 Full Taper 3 4-1/2 3 22-9/16 359.6 352 46,690 1,168 48 1,219 6 6-3/4 FULL TAPER 3 4-1/2 3 23-3/8 387.5 390 61,190 3 50 1,270 6-3/4 7-1/2 Full Taper 3 5 24-7/16 420.5 460 75,570 52 1,321 6-3/4 7-1/2 FULL TAPER 3 5 3 25-7/16 456.2 505 91,460 54 1,372 6-3/4 7-1/2 FULL TAPER 3 5 3 26-7/16 493.3 552 109,740 56 1,422 6-3/4 7-1/2 Full Taper 3 5 3 27-3/8 531.9 604 131,130

*WR2 = $\pm 10\%$ in Air (inch squared lbs.)

1. Mass moment of inertia properties calculated using minimum standard bore.

2. Mass moment of inertia properties calculated using bronze.

3. Some DQ Specials have blade area other than 0.86.

				Dura-	QUAD S	PECIFICA	TIONS (0 .	76 E.A.F	R.)			
Diam	ETER	Нив	DIMENSIONS (INC	HES)		Standard Tap	er Bore (Inches))	Μαχιμυμ		0 NI	t) A/D2 (
INCHES	MM	AFT END	Forward End	LENGTH	Minimum Bore	Maximum Bore	PILOT BORE	Pilot S.E. Bore	Blade Width (Inches)	Area Per Blade (sq.in)	Approx. Net Weight (lbs.)	*WR² (LBS IN²)
24	610	3	3-3/8	6	1-1/2	2	1-1/2	1.172	10-7/16	85.5	52	1,780
26	660	3-3/8	3-7/8	6-3/4	1-3/4	2-1/4	1-3/4	1.375	11-5/16	99.9	67	2,650
28	711	3-3/4	4-1/4	7-1/2	2	2-1/2	2	1.578	12-3/16	115.7	85	3,830
30	762	4-1/4	4-7/8	9	2	3	2	1.531	13-1/16	132.1	113	5,420
32	813	4-1/4	4-7/8	9	2	3	2	1.531	13-15/16	151.1	129	7,420
34	864	4-1/4	4-7/8	9	2	3	2	1.531	14-13/16	171.4	148	9,980
36	914	4-5/8	5-1/4	10-1/2	2-3/4	3-1/2	2-3/4	2.164	15-5/8	191.8	176	13,260

Notes:

*WR2 = $\pm 10\%$ in Air (inch squared lbs.)

			PA	C-MASTER		CATIONS (C).86 E.A.	R.)			
DIAMETER		Hu	B DIMENSIONS (INC)	ies)	Stand	ard Taper Bore (I	NCHES)	Махімим	Expanded Area Per	Approx. Net	
INCHES	ROTATION	AFT END	FORWARD END	LENGTH	MINIMUM BORE	MAXIMUM BORE	Pilot Bore	Blade Width (Inches)	BLADE (SQ.IN)	WEIGHT (LBS.)	*WR ² (lbsin ²)
20 x 18	R	2-3/4	3	4-1/2	1-1/2	1-3/4	1-1/2	8-1/16	54.2	26	627
20 x 20	R	2-3/4	3	4-1/2	1-1/2	1-3/4	1-1/2	8-1/16	54.2	26	627
22 x 18	R	3	3-1/4	4-7/8	1-3/4	2	1-3/4	8-7/8	65.5	34	1,003
22 x 20	R	3	3-1/4	4-7/8	1-3/4	2	1-3/4	8-7/8	65.5	34	1,003
22 x 22	R	3	3-1/4	4-7/8	1-3/4	2	1-3/4	8-7/8	65.5	34	1,003
24 x 20	R & L	3-3/8	3-3/4	5-3/4	2	2-1/4	2	9-11/16	77.8	46	1,545
24 x 22	R & L	3-3/8	3-3/4	5-3/4	2	2-1/4	2	9-11/16	77.8	46	1,545
24 x 24	R & L	3-3/8	3-3/4	5-3/4	2	2-1/4	2	9-11/16	77.8	46	1,545
26 x 20	R & L	3-7/8	4-1/4	6	2	2-1/2	2	10-1/2	90.9	61	2,302
26 x 22	R & L	3-7/8	4-1/4	6	2	2-1/2	2	10-1/2	90.9	61	2,302
26 x 24	R & L	3-7/8	4-1/4	6	2	2-1/2	2	10-1/2	90.9	61	2,302
26 x 26	R & L	3-7/8	4-1/4	6	2	2-1/2	2	10-1/2	90.9	61	2,302
26 x 30	R & L	3-7/8	4-1/4	6	2	2-1/2	2	10-1/2	90.9	61	2,302
28 x 26	R & L	3-7/8	4-1/4	6	2	2-1/2	2	11-1/4	106.2	72	3,303
28 x 28	R & L	3-7/8	4-1/4	6	2	2-1/2	2	11-1/4	106.2	72	3,303
30 x 20	R	3-7/8	4-1/4	6-1/2	2	2-1/2	2	12-1/16	122.5	85	4,633
30 x 28	R & L	3-7/8	4-1/4	6-1/2	2	2-1/2	2	12-1/16	122.5	85	4,633
30 x 30	R	3-7/8	4-1/4	6-1/2	2	2-1/2	2	12-1/16	122.5	85	4,633
*WR2 - +10%	in Air (inch sou	uared lbs)		MWR = 0.32	6	BTF =	0.060				Statement of the local division in which the local division in the local division in the local division in the

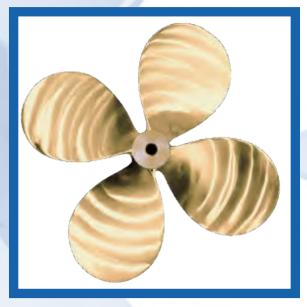
*WR2 = $\pm 10\%$ in Air (inch squared lbs.) Odd diameter & pitch within 2" of listed are quoted on request. B.T.F. = 0.060

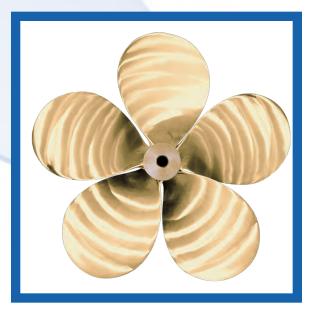
MACHINE PITCH Specifications

0.51 E.A.R. - Diameter Range: 9" - 60" 0.47 E.A.R. - Diameter Range: 62" - 96" The most well-known, finest crafted 3-blade propeller for all purpose use. This style and design is primarily used on vessels with speeds less than 15 knots. The design of MP-style propellers include: semi-elliptical shape; constant pitch; and ogival blade sections. The Heavy Duty (HD) is identical in design to the Machine Pitch, but incorporates thicker blade edges, engineered specifically for severe conditions. These edges resist abrasion and blade fracture.

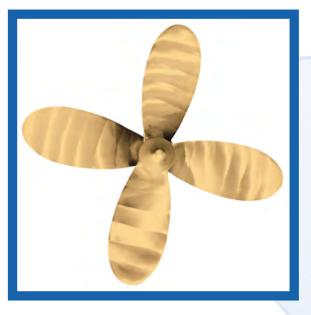
WORK HORSE Specifications


0.71 E.A.R. - Diameter Range: 18" - 60" 0.622 E.A.R. - Diameter Range: 62" - 96" The Work Horse is the best known commercial propeller in the world. Tug and push boat operators choose the Work Horse for its semi-elliptical shape, excellent reverse-thrust performance and ability to push hard-working boats.




WORK HORSE 5 Specifications 0.8875 E.A.R.

Diameter Range: 30" x 60" The Work Horse 5 propeller is a recent evolution of the traditional Work Horse propeller. The increased blade number provides additional blade area for commercial applications with higher horsepower and thrust requirements. Additionally, the Work Horse 5 will help to reduce vibration levels on vessels where non-uniform water flow or propeller tip clearance limitations exist.



	M	ACHINE	Рітсн	& Wor	K HOR	SE S PE	ECIFICA	TIONS		Machin	е Рітсн	Work I	Horse	Work	Horse 5
Diam		1	DIMENSIONS (IN			d Taper Bor		Махімим	Expanded	Approx.		Approx.		APPROX.	
INCHES	MM	AFT END	Forward End	Length	MINIMUM Bore	Maximum Bore	Pilot Bore	Blade Width (Inches)	Area Per Blade (sq.in)	Net Weight (lbs.)	*WR ² (LBSIN ²)	NET WEIGHT (LBS.)	*WR ² (lbsin ²)	Net Weight (lbs.)	*WR ² (LBSIN ²)
9	229	1-5/16	1-7/16	2-1/8	3/4	3/4	3/4	3-7/8	11.8	2.5	13	-	-	-	-
10	254	1-7/16	1-5/8	2-1/8	3/4	7/8	3/4	4-5/16	14.5	3.5	21	-	-	-	-
11	279	1-7/16	1-5/8	2-1/8	3/4	7/8	3/4	4-5/8	17.6	4	34	-	-	-	-
12	305	1-9/16	1-3/4	2-5/8	7/8	1-1/8	7/8	5-1/16	20.9	5	50	-	-	-	-
13	330	1-9/16	1-3/4	2-3/4	1	1-1/8	1	4-15/16	22.7	6	65	-	-	-	-
14	356	1-3/4	2	3	1	1-1/8	1	5-5/16	26.4	8	90	-	-	-	-
15	381	1-3/4	2	3	1	1-1/8	1	5-5/8	30.3	9	120	-	-	-	-
16	406	1-15/16	2-3/16	3-3/8	1-1/8	1-1/4	1-1/8	6-15/16	34.5	11	160	-	-	-	-
17	432	2	2-5/16	3-3/8	1-1/8	1-3/8	1-1/8	6-7/16	38.9	12	210	-	-	-	-
18	457	2	2-5/16	3-3/8	1-1/8	1-3/8	1-1/8	6-7/8	43.6	14	280	17	370	-	-
19	483	2-1/8	2-7/16	3-3/4	1-1/4	1-3/8	1-1/4	7-1/4	48.6	16	350	20	480	-	-
20	508	2-1/8	2-7/16	3-3/4	1-1/4	1-3/8	1-1/4	7-1/2	53.8	18	470	23	630	-	-
21	533	2-7/16	2-13/16	4-1/8	1-3/8	1-1/2	1-3/8	8	59.4	22	590	28	790	-	-
22	559	2-7/16	2-13/16	4-1/8	1-3/8	1-1/2	1-3/8	8-3/8	65.1	25	760	32	1,020	-	-
23	584	2-13/16	3-3/16	4-1/2	1-1/2	1-3/4	1-1/2	8-7/8	71.2	30	940	38	1,250	-	-
24	610	2-13/16	3-3/16	4-1/2	1-1/2	1-3/4	1-1/2	9-1/8	77.5	33	1,140	41	1,510	-	-
26	660	3-3/16	3-5/8	5-1/4	1-3/4	2	1-3/4	9-7/8	91	44	1,710	54	2,280	-	-
28	711	3-1/2	4	5-1/4	1-3/4	2-1/4	1-3/4	10-5/8	105.5	55	2,490	68	3,320	-	-
30	762	3-13/16	4-3/8	6	2	2-1/2	2	11-3/8	124.7	70	3,460	87	4,590	108	6,100
32	813	4-1/4	4-13/16	6	2	3	2	12-3/16	141.8	97	5,960	121	7,920	150	10,526
34	864	4-7/16	5-1/16	6-3/4	2-1/4	3-1/4	2-1/4	12-7/8	160.1	114	7,810	142	10,380	177	13,795
36	914	4-3/4	5-1/2	7	2-1/2	3-1/2	2-1/2	13-5/8	179.5	136	10,350	170	13,750	211	18,274
38	965	5-1/16	5-13/16	7-1/4	2-1/2	3-3/4	2-1/2	14-7/16	200	159	13,200	198	17,540	246	23,311
40	1,016	5-1/16	5-13/16	7-3/4	2-3/4	3-3/4	2-3/4	15-3/16	221.6	177	16,600	221	22,070	275	29,331
42	1,067	5-1/4	6	8	2-3/4	3-3/4	2-3/4	15-15/16	244.3	211	22,620	265	30,090	329	39,990
44	1,118	5-1/4	6	8	2-3/4	3-3/4	2-3/4	16-3/4	268.1	232	27,820	293	37,010	364	49,186
46	1,168	6	6-3/4	10	3	4	3	17-7/16	293.1	285	34,170	354	45,400	440	60,337
48	1,219	6	6-3/4	10	3	4	3	18-1/4	319.1	309	41,290	386	54,900	480	72,962
50	1,270	6-9/16	7-3/8	10-3/4	3	4-1/2	3	19	346.2	362	49,820	447	66,190	556	87,967
52	1,320	6-9/16	7-3/8	10-3/4	3	4-1/2	3	19-3/4	374.5	390	59,370	485	78,900	603	104,858
54	1,371	6-9/16	7-3/8	10-3/4	3	4-1/2	3	20-1/2	408.8	420	70,320	526	93,510	654	124,275
56	1,422	7-5/8	8-3/8	11-1/2	3-1/4	5	3-1/4	21-1/4	434.3	498	83,470	615	110,830	764	147,293
58	1,473	7-5/8	8-3/8	11-1/2	3-1/4	5	3-1/4	21-7/8	465.9	533	97,700	661	129,810	822	172,517
60	1,524	7-5/8	8-3/8	12	3-1/2	5	3-1/2	22-3/4	498.6	572	113,880	713	151,360	886	201,157
62	1,575	9	10	13-1/4	4	6	4	22-1/2	492.8	737	143,870	902	190,790	-	-
64	1,625	9	10	13-1/4	4	6	4	23-1/8	525.1	781	165,830	961	220,060	-	-
66	1,676	9	10	13-1/4	4	6	4	23-15/16	558.4	828	190,420	1,024	252,850	-	-
68	1,727	10-1/2	11-3/4	14-1/2	5	7	5	24-5/8	592.8	987	221,140	1,199	292,710	-	-
70	1,778	10-1/2	11-3/4	14-1/2	5	7	5	25-3/8	628.1	1,039	251,690	1,269	333,450	-	-
72	1,823	10-1/2	11-3/4	14-1/2	5	7	5	26-1/8	664.5	1,094	285,590	1,342	378,650	-	-
74	1,879	10-1/2	11-3/4	14-1/2	6	7	6	26-7/8	702	1,159	340,800	1,436	452,320	-	-
76	1,930	10-1/2	11-3/4	14-1/2	6	7	6	27-9/16	740.4	1,228	388,680	1,529	516,160	-	-
78	1,981	10-1/2	11-3/4	14-1/2	6	7	6	28-1/4	779.9	1,301	441,530	1,626	586,630	-	-
80	2,032	11-1/8	12-1/2	17	6	7-1/2	6	29	820.4	1,493	503,610	1,844	668,350	-	-
82	2,083	11-1/8	12-1/2	17	6	7-1/2	6	29-3/4	862	1,574	568,320	1,952	754,640	-	-
84	2,134	11-1/8	12-1/2	17	6	7-1/2	6	30-7/16	904.5	1,659	639,650	2,064	849,740	-	-
86	2,184	11-1/8	12-1/2	17	6	7-1/2	6	31-3/16	948.1	1,748	718,600	2,183	955,010	-	-
88	2,235	11-1/8	12-1/2	17	6	7-1/2	6	31-15/16	992.7	1,842	805,280	2,308	1,070,600	-	-
90	2,286	11-7/8	13-1/4	18-1/4	6	8	6	32-5/8	1,038.3	2,048	903,200	2,547	1,199,900	-	-
92	2,337	11-7/8	13-1/4	18-1/4	6	8	6	33-3/8	1,085.0	2,150	1,003,950	2,683	1,338,260	-	-
94	2,388	11-7/8	13-1/4	18-1/4	6	8	6	34-1/16	1,132.7	2,256	1,119,400	2,825	1,488,200	-	-
96	2,438	11-7/8	13-1/4	18-1/4	6	8	6	34-13/16	1,181.4	2,263	1,238,750	2,869	1,648,600	-	-

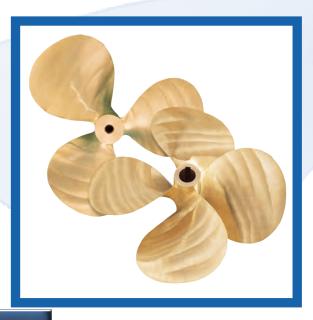
TRAWLER Specifications

0.44 E.A.R. - Diameter Range: 36" - 72"

The Trawler series gives four blade performance without reduced diameter, and is primarily used on shrimp boats, trawlers and similar vessels that need thrust and smooth running performance.

KAPLAN Specifications Standard 0.56 E.A.R.; 0.71 E.A.R. Diameter Range: 35" - 95" Custom & Skewed Configurations Available The Kaplan propeller is designed for hard-working

trawlers, draggers and tugs. The Kaplan is manufactured to operate in a nozzle and the design includes air foil sections at inner radii, and flat face ogival sections at outer radii.



Specifications

0.63 E.A.R. - 3 Blade 0.836 E.A.R. - 4 Blade Diameter Range: 32" x 50"

The heavy-duty blade thickness distribution makes the Maxima the most durable commercial offering. The blade design is wider than the standard for applications that require maximum thrust, including: moderate-speed crew supply; high horsepower applications; and passenger boats requiring maximum thrust.

	Trawler Specifications (0.44 E.A.R.)													
Diam	METER	Hu	B DIMENSIONS (INCH	ies)	Stand	ard Taper Bore (II	NCHES)	Махімим		A				
INCHES	ММ	AFT END	FORWARD END	Length	MINIMUM BORE	MAXIMUM BORE	PILOT BORE	Blade Width (Inches)	Area Per Blade (sq.in)	Approx. Net Weight (lbs.)	*WR ² (LBSIN ²)			
36	914	4-7/16	5-1/16	7	2-1/2	3-1/4	2-1/2	8-1/2	108.8	145	9,900			
38	965	4-7/16	5-1/16	7	2-1/2	3-1/4	2-1/2	9	121.2	160	12,200			
40	1,016	4-7/16	5-1/16	7	2-1/2	3-1/4	2-1/2	9-1/2	134.4	187	15,800			
42	1,067	4-3/4	5-1/2	8	2-3/4	3-1/2	2-3/4	10	148.2	221	20,600			
44	1,118	4-3/4	5-1/2	8	2-3/4	3-1/2	2-3/4	10-3/8	162.6	248	25,400			
46	1,168	4-3/4	5-1/2	8	2-3/4	3-1/2	2-3/4	11	177.6	284	31,700			
48	1,219	6	6-3/4	9	3	4	3	11-3/8	193.6	322	39,300			
50	1,270	6	6-3/4	9	3	4	3	11-7/8	210.0	370	49,000			
52	1,321	6	6-3/4	9	3	4	3	12-3/8	227.4	402	57,500			
54	1,372	6-9/16	7-3/8	10-3/4	3-1/2	4-1/2	3-1/2	12-3/4	244.8	451	69,500			
56	1,422	6-9/16	7-3/8	10-3/4	3-1/2	4-1/2	3-1/2	13-1/4	273.2	496	82,000			
58	1,473	6-9/16	7-3/8	10-3/4	3-1/2	4-1/2	3-1/2	13-3/4	282.8	546	97,000			
60	1,524	6-9/16	7-3/8	10-3/4	3-1/2	4-1/2	3-1/2	14-1/4	302.2	587	112,000			
62	1,575	7-5/8	8-3/8	11-1/2	4	5	4	14-5/8	322.4	642	130,500			
64	1,626	7-5/8	8-3/8	11-1/2	4	5	4	15-1/8	343.9	693	150,000			
66	1,676	7-5/8	8-3/8	11-1/2	4	5	4	15-5/8	365.8	783	181,000			
68	1,727	8	9	13-1/4	4	5-1/2	4	16-1/8	388.0	887	217,800			
70	1,778	8	9	13-1/4	4	5-1/2	4	16-5/8	411.8	991	257,000			
72	1,828	8	9	13-1/4	4	5-1/2	4	17	434.9	1,110	302,000			
*WR2 = ±109	% in Air (inch squ	uared lbs.)		M.W.R. = 0.2	1		B.T.F. =	32" - 34" Dia 36" - 60" Dia						

36" - 60" Dia = 0.038 62" - 70" Dia = 0.042

KAPLAN SPECIFICATIONS (0.56 E.A.R.)												
Dian	IETER	Hu	JB DIMENSIONS (INCH	ies)	Stane	ard Taper Bore (In	NCHES)	Махімим	Expanded Area Per	Approx. Net		
INCHES	MM	AFT END	FORWARD END	Length	MINIMUM BORE	MAXIMUM BORE	PILOT BORE	BLADE WIDTH (INCHES)	BLADE (SQ.IN)	WEIGHT (LBS.)	*WR ² (LBSIN ²)	
35	889	4-3/4	5-1/2	7-1/2	2-1/2	3-1/2	2-1/2	10-9/16	135	117	6,650	
39	991	5-1/16	5-13/16	8	2-3/4	3-3/4	2-3/4	11-3/4	167	154	11,300	
43	1,090	5-1/4	6	8-1/4	2-3/4	3-3/4	2-3/4	12-7/8	203	196	18,240	
45	1,140	6	6-3/4	10	3	4	3	13-9/16	222	246	23,220	
47	1,190	6	6-3/4	10	3	4	3	14-3/16	243	269	28,650	
51	1,300	6-9/16	7-3/8	10-3/4	3-1/2	4-1/2	3-1/2	15-3/8	286	341	43,110	
53	1,350	6-9/16	7-3/8	10-3/4	3-1/2	4-1/2	3-1/2	15-7/8	309	371	51,920	
55	1,400	7-5/8	8-3/8	11-1/2	4	5	4	16-5/8	333	445	63,600	
59	1,500	7-5/8	8-3/8	12	4	5	4	17-3/4	383	521	89,230	
63	1,600	9	10	13-1/4	4	6	4	19-3/16	436	701	126,330	
67	1,700	10-1/2	11-3/4	14-1/2	5	7	5	20-5/8	494	907	175,980	
71	1,800	10-1/2	11-3/4	14-1/2	5	7	5	21-11/16	554	1,011	231,530	
75	1,905	10-1/2	11-3/4	14-1/2	5	7	5	22-3/4	618	1,128	300,500	
79	2,006	11-1/8	12-1/2	17	6	7-1/2	6	24	687	1,350	391,360	
83	2,108	11-1/8	12-1/2	17	6	7-1/2	6	25-1/16	758	1,493	495,870	
87	2,209	11-1/8	12-1/2	17	6	7-1/2	6	26-1/8	832	1,650	621,740	
91	2,311	11-7/8	13-1/4	18-1/4	6-1/2	8	6-1/2	27-7/16	911	1,915	780,850	
95	2,413	11-7/8	13-1/4	18-1/4	6-1/2	8	6-1/2	28-1/2	993	2,104	961,860	

*WR2 = ±10% in Air (inch squared lbs.) Greater area ratios available and quoted upon request. For use in commercial Kort Nozzle applications, resulting in 25-50% increased thrust compared to an open wheel, on low speed trawlers, draggers, and harbor tugs.

Michigan Wheel's objective in appreciating and effecting 'state of the art' propeller design and manufacture is to provide vessel owners with propellers that meet or exceed the design objectives of the designer and builder.

FEDERAL MANUFACTURING

ENGINEERED MANUFACTURING PROCESSES ARE EMPLOYED IN MANUFACTURING FEDERAL PROPELLERS TO SPECIFIC TOLERANCES. PROCESS

Control

Each segment of manufacture has strict control and documentation. This control assures that the end product will result in close interpretation of design. The specific design and tolerance level created for the propellers on a design particular application is determined by expectations and analytical modeling of those The control level of manufacture, expectations. particularly in the NC machine finished propeller product, calls into question the use of gages to verify aspects that are programmed into the manufacture.

Tolerance

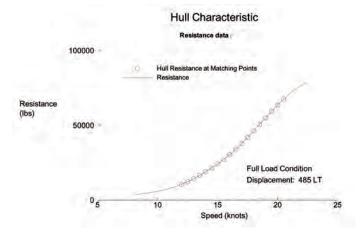
Federal Propellers are manufactured to close tolerance. Aspects of the manufacture meet the recognizable standard of ISO-484/2, Class 1 and Class S. The intent of establishing tolerance on Federal Propellers is to address the features most critical to end performance. 100% compliance with ISO standards, including development of specific thickness and edge gages, is exceptional.

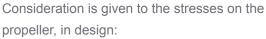
Certifications

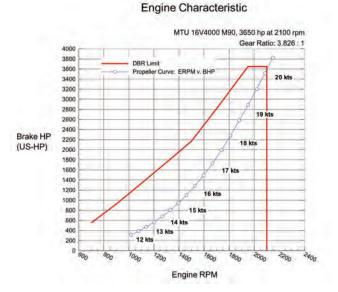
PLDO	
CARTINGATE NO. 10 MILTS CENTRAL THE	SPRETTY STATE
CERTIFICATE OF CASTING FACILITY AND P	ROCESS APPROVAL
BASED ON EXCHANGED AND REALTS AND A A	ANT SHUT OF THE FACILITY
MICHIGAN WHEEL	
APPROVED TO INCOME INFORM CONTRACT AS OUTLAND IN AND ONCOME POINT OFFICE SAFED THAT AND APPROVE, LITTLE IN	GUIVER REPORT OF CALIFORNIA
THE APPROVAL IS AN O FOR THE TENES OF EDDRACATE. THE RELEMANT AND MARKS OF MEDIFICIE AND INDUSCION, MEMOTION, AN TO BE TO THE SATURACION OF THE ATTEMENT	AN IN COMPANY IN ALL ADDRESS OF THE ADDRESS AND ADDR
.	2 mganga
-	un Wayad. New Wandging Process Controls. I Mananan Annan

ABS Certification

Lloyd's Register






DESIGN CONSIDERATIONS

In working with builders, the Federal design team utilizes a number of tools and programs to optimize suggested propeller design.

Hull and Engine characteristics are plotted against data provided by the builder/boat designer and the engine companies:

propeller, in design:

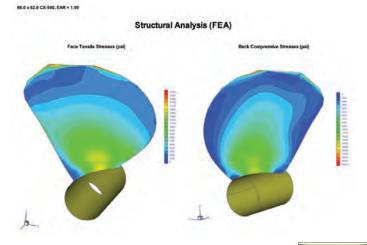
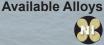
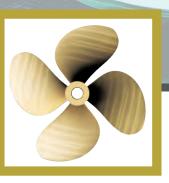




Photo Courtesy of Tribute Performance Boats

"MARLIN" SERIES

The result of major research and development undertaken with Maritime Research Associates LLC (MRA), MTU Detroit Diesel, and the Maritime Research Institute of the Netherlands (MARIN). Marlin propellers are for high power / high speed Sportfish and Sportcruiser models that are capable of speeds into the high 40 knot range.

MARLIN 4

Specifications 0.825 - 0.90 E.A.R.

MARLIN 5

Specifications

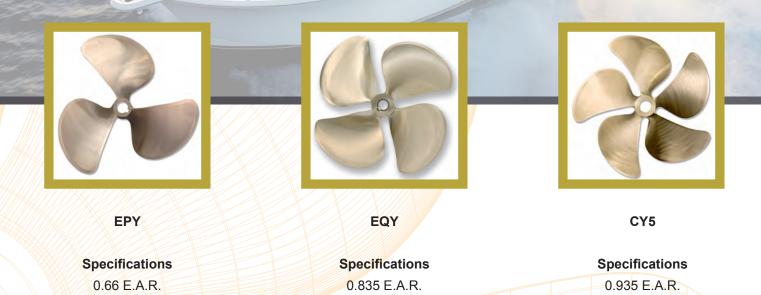
0.90 - 1.05 E.A.R.

DESIGN CAVITATION PATTERN (Looking Spanwise: Hub to Tip)

The Marlin Series is the result of a major research and development program undertaken with the Maritime Research Associates LLC (MRA), MTU Detroit Diesel, and the Maritime Research Institute of the Netherlands (MARIN). The applications are for high power / high speed Sportfish and Sportcruiser models that are capable of speeds into the high 40 knot range.

This series is primarily for new construction, involving Michigan Wheel at design, where consideration can be given to best appreciate of MARLIN configuration. The Marlin propellers in 4-blade will range from 0.825 to 0.90 E.A.R., and 0.90 to 1.05 E.A.R. in 5-blade.

The Marlin Series design features variable pitch, camber, skew, and a degree of rake. All Marlin propellers are fully CNC machine finished to high tolerance. The purpose of the series, beyond optimizing performance, is to manage cavitation.


Photo Courtesy of Tiara Yachts

Available Alloys

"Y" SERIES

Semi-custom series that offers many features and benefits of a full-custom propeller with the economics of series manufacture.

The "Y" is evolved from years of custom propeller design experiences. All "Y" propellers are fully CNC machine finished.

The chosen combination of blade area and skew in this series, along with variable pitch and camber, make for a close efficiency match throughout the entire engine power curves. Years of propeller design experience have allowed Michigan Wheel naval architects to optimize the "Y" design to maximize the performance of virtually all planing hulls. Increasingly, boat builders are choosing to install the "Y" series as standard equipment after appreciating the difference in sea trials compared to less sophisticated product.

Each EPY, EQY, and CY5 propeller is manufactured to exacting specifications, and inspected using the latest digital technology. Each propeller is given a serial number, permitting design and inspection data to be retrieved and reviewed for field service.

Photo Courtesy of Trinity Yachts LLC

"CX" SERIES

Available Alloys

The best possible choice for propeller performance - Better cruise speed, better acceleration, improved fuel economy, and smoother, quieter operation.

The use of CNC machining and inspection technology ensures that every CX propeller is manufactured as designed. This process results in consistent and repeatable propeller manufacture, so replacement sets or spares will match the original.

Blind Date

88.0

111

Michigan Wheel naval architects can design a custom propeller for your specific application. Using vessel data and performance targets provided by the custom, a propeller with the optimum combination of diameter, pitch, blade count, blade area, and camber is designed to maximize the performance of each yacht that is evaluated. All CX propellers are completely CNC machined to exacting specifications.

Michigan Wheel design and sales teams work closely with designers, yacht builders, propeller shops and owners to qualify optimal propellers for any given application. Michigan Wheel engineers use the latest in propeller design technology to design each propeller, including custom propeller geometry design code and sophisticated hydrodynamic analysis software. This allows the designer to maximize propeller efficiency while minimizing the performance robbing effects of cavitation. This is particularly important as engine horsepower and boat speeds continue to increase.

Every new CX Series propeller is given a 5-digit serial number, which gives customer service and repair agents a detailed history for a particular propeller. Field service requires sophisticated computerized propeller measurement equipment, i.e. Hale MRI, which can appreciate the original design and apply to any rework necessary. Michigan Wheel representatives work with repair facilities providing the necessary assistance to resolve propeller related issues.

"HX" SERIES

The Federal HX Series offers high tolerance hand finished propeller manufacture in a variety of design configurations. This series is primarily constant pitch, with expanded area ratios. High horsepower pleasure and commercial applications require specific propellers to achieve maximum thrust, speed, and smoothness. The proven pitch geometry yields exceptional performance without the additional cost associated with custom, CNC machined propellers.

"X" SERIES

EPX and EQX are an evolution of the tried and true Equi-Poise and Equi-Quad Series propellers. The designs have been modified to be better suited to highly loaded, limited tip clearance applications. New manufacturing technologies, such as machine finishing, are utilized in manufacture to facilitate accurate and repeatable product. Availability will be size specific, in a range of bores, without or with all degrees of cup.

EQUI-POISE & EQUI-QUAD

The Federal Equi-Poise three blade and Equi-Quad four blade propeller series are for applications that benefit from traditional propeller geometry held to a close tolerance. The proven performance of these designs is enhanced through strict manufacturing controls. Those controls result in closely matched sets that are a step above standard line series propellers. By utilizing a traditional design, Michigan Wheel can supply a vast range of sizes, at good value, with a minimal lead time.

Our commitment to quality begins long before the receipt of your order. Our raw materials are inspected and certified prior to acceptance and our personnel complete extensive training programs. This combination ensures that HyTorq Propellers exhibit the quality, value and dependability that has become the standard.

Photo Courtesy of Sea Ray Corporation

HYTORQ PROPELLERS

In some engineering applications, there are times when standard product lines do not do the job. For these situations, Michigan Wheel Marine offers a complete custom design and manufacturing service. Whether or not your resulting propeller is CNC Machined or of our standard high quality hand finish, we will ensure you have a propeller suiting your needs.

MY-T3

The HyTorq MY-T3 is designed for both hard-working fishing boats and pleasure craft captains. Designed to handle today's high-powered engines with ease, the MY-T3 has a large blade area to enhance performance and maneuverability.

MY-T4

Manufactured to the same high quality standard as the HyTorq MY-T3, the MY-T4 is the right choice where greater blade area and super smooth operation are desired.

MY-T5

Many operators are selecting the HyTorg MY-T5 propellers for new construction, repowering, and propeller upgrading. The main reason is to employ more blade area without having to increase propeller diameter, which may not be possible due to clearance or tip speed considerations. Another common reason is to improve propeller performance in installations where heavy vee struts, dead wood, or other hull appendages are agitating the water flow to the propeller.

		HyTord		CATIONS		H _Y -	Torq MY	′-T3	HyTorq MY-T4				
		Forward		Standard Taper Bore (Inches)		(Inches)		_			_		
Propeller Diameter	Aft hub Diameter	Hub Diameter	HUB LENGTH	Minimum Bore	Maximum Bore	PILOT BORE	Weight (LB.)**	Developed Area (IN²)	WR ^{2**} (LB-IN ²)	Weight (LB.)**	Developed Area (IN ²)	WR ^{2**} (LB-IN ²)	
17	2-1/4	2-1/2	3-1/2	1-1/4	1-1/2	1-1/4	16	126.6	333	19	153.1	366	
18	2-3/8	2-5/8	3-1/2	1-1/4	1-3/4	1-1/4	17	141.9	392	19	171.7	429	
19	2-3/8	2-5/8	3-7/8	1-1/4	1-3/4	1-1/4	19	166.2	478	21	202.7	499	
20	2-3/8	2-5/8	4	1-1/4	1-3/4	1-1/4	21	175.3	553	23	212.1	622	
21	2-3/4	3	4-1/8	1-3/8	2	1-3/8	27	202.4	680	28	238.6	790	
22	2-3/4	3	4-1/4	1-3/8	2	1-3/8	30	212.1	810	31	256.9	940	
23	3-1/8	3-1/4	4-1/4	1-1/2	2	1-3/8	35	240.6	1,070	39	288.4	1,300	
24	3-1/8	3-1/4	4-5/8	1-1/2	2	1-3/8	35	252.4	1,220	41	305.4	1,450	
26	3-3/8	3-5/8	5	1-3/4	2-1/4	1-1/2	50	296.3	1,770	53	3584	2,150	
28	3-3/4	4	5-3/4	1-3/4	2-1/2	1-3/4	57	343.6	2,630	66	415.6	3,240	
30	4	4-1/4	6	1-3/4	2-3/4	1-3/4	78	394.4	3,520	82	477.1	4,230	
32	4-1/4	4-1/2	6	2	3	2	94	448.8	4,810	100	542.9	5,960	
34	4-1/4	4-1/2	6-1/2	2	3	2	107	506.6	6,460	140	612.8	8,020	
36	4-3/4	5-1/4	8-1/4	2-3/4	3-1/2	2-1/2	130	567.7	8,910	146	686.7	11,230	
38	5-1/4	5-1/2	8-1/4	2-3/4	3-1/2	2-1/2	-	-	-	172	765.2	13,750	
40	5-1/4	5-1/2	9	3	3-3/4	3	-	-	-	192	847.8	17,180	
42	5-1/2	6	10-1/2	3	4	3	-	-	-	240	930.2	24,400	
44	5-1/2	6-1/4	10-1/2	3	4	3	-	-	-	282	1,025.8	31,500	
46	5-1/2	6-1/4	10-1/2	3	4	3	-	-	-	304	1,121.0	37,000	
48	5-1/2	6-1/4	10-1/2	3	4	3	-	-	-	340	1,121.0	45,800	

		HyTorq MY-T5							
				Stai	NDARD TAPER BORE (INC	CHES)			
Propeller Diameter	AFT HUB DIAMETER	Forward Hub Diameter	Hub Length	MINIMUM BORE	MAXIMUM BORE	Pilot Bore	Weight (LB.)**	Developed Area (IN²)	WR ^{2**} (LB-IN ²)
24	3-1/8	3-1/4	4-5/8	1-1/2	2	1-3/8	57	384	1,990
26	3-3/8	3-5/8	5	1-3/4	2-1/4	1-1/2	72	451	3,115
28	3-3/4	4	5-3/4	1-3/4	2-1/2	1-3/4	79	523	3,967
30	4	4-1/4	6	1-3/4	2-3/4	1-3/4	109	601	6,480
32	4-1/4	4-1/2	6	2	3	2	150	683	8,847
34	4-1/4	4-1/2	6-1/2	2	3	2	180	772	11,985
36	4-3/4	5-1/4	8-1/4	2-3/4	3-1/2	2-1/2	210	864	15,676
38	5-1/4	5-1/2	8-1/4	2-3/4	3-1/2	2-1/2	240	964	19,961
40	5-1/4	5-1/2	9	3	3-3/4	3	260	1,068	23,961
42	5-1/2	6	10-1/2	3	4	3	325	1,177	33,022
44	5-1/2	6-1/4	10-1/2	3	4	3	370	1,291	41,260
46	5-1/2	6-1/4	10-1/2	3	4	3	410	1,412	49,975

EVOLUTION OF THE WHEEL

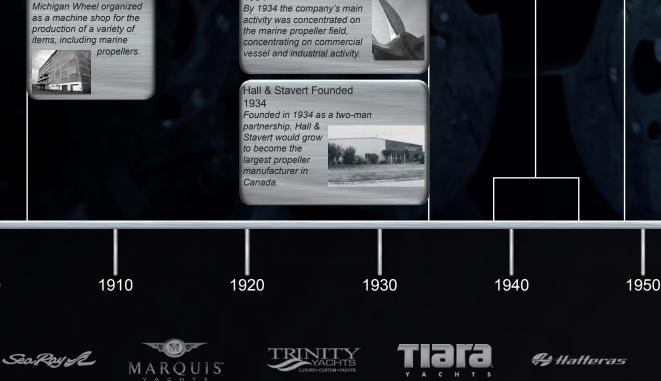
With over a century of history, despite several ownership and name changes, despite industry downturns and upturns, Michigan Wheel Marine has remained a reliable and dedicated supplier of marine propellers to the recreational and commercial marine industry.

oday, Michigan Wheel Marine offers tens of thousands of variations of propellers, and still retains its leadership position in original equipment and aftermarket propeller supply. The "Michigan" and "Federal" names are recognized and demanded world wide. Much credit goes to its loval and supportive distributor and builder base, and its own dedicated employees. Our extensive history with marine propulsion has provided Michigan Wheel Marine with a solid foundation from which to continue meeting marine industry demands in the future.

Michigan Wheel Founded

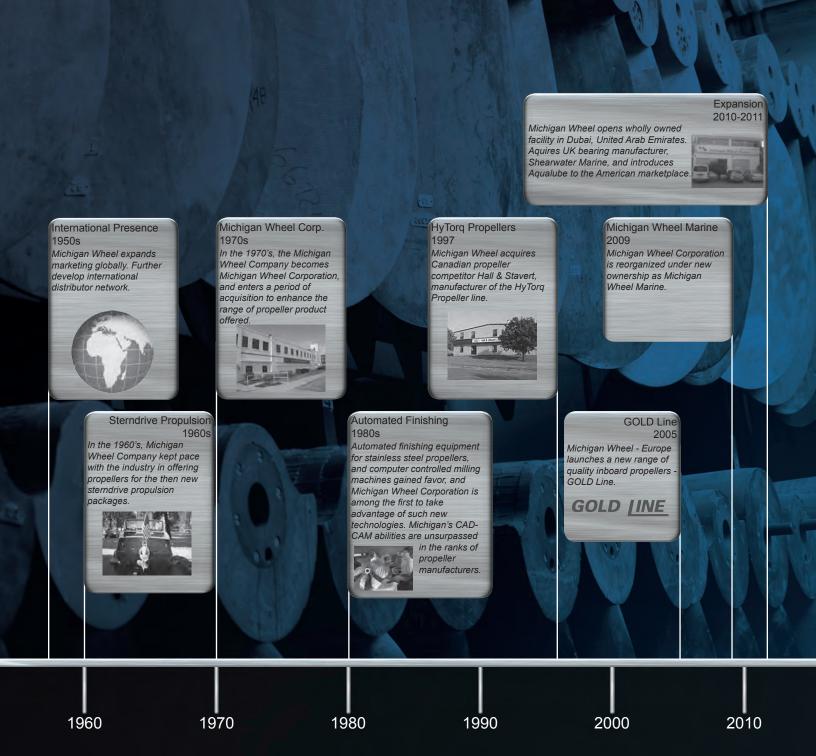
1903

Federal Propellers Michigan Wheel Company purchased Federal Propellers, uniting the primary suppliers of recreational propellers. With a combined volume in production, Michigan Wheel Company is able to incorporate efficient manufacturing process.



War Years Growth 1940s

Real growth began with the war years, when military requirements demanded the "know-how" that Michigan Wheel had developed. After the war. recreational boating grew by leaps and bounds, and the Michigan Wheel Company was among the leaders in supplying propellers for a growth industry.



Propeller Concentration

1934

Catalina || Yachts

MANUFACTURING PROCESS

MICHIGAN WHEEL MARINE HAS ONE GOAL - TO PRODUCE THE FINEST PROPELLERS POSSIBLE, WHILE MAINTAINING THE HIGHEST STANDARDS OF QUALITY.

Michigan Propeller standard series offerings are available, affordable, and readily repairable. Stocking distributors throughout North American and Europe carry a wide variety of diameter and pitch ranges.

For immediate availability worldwide, Michigan Propellers a highly successful "field needs" service at no charge. This service locates a propeller in our distributors' stock to meet a customer's needs. Michigan Wheel Marine also has extensive experience in handling custom orders and in product export.

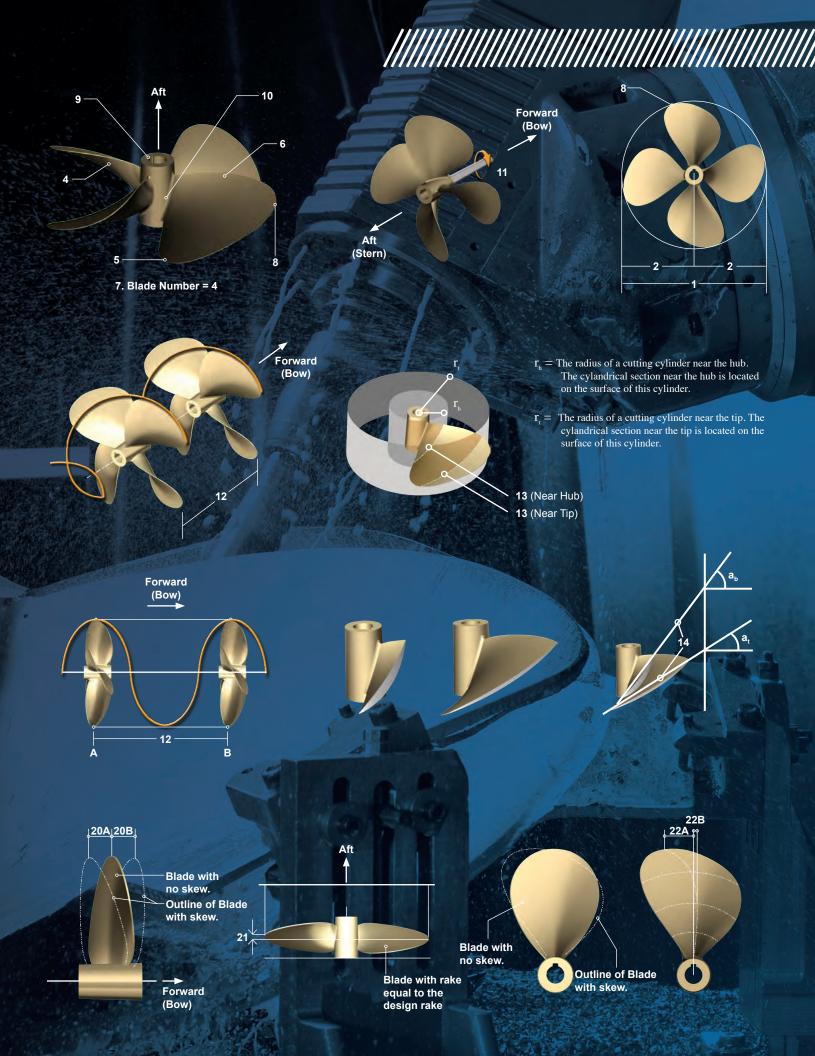
No matter the desired propeller, Michigan Wheel either has an existing design and casting pattern in its extensive inventory, or is able to design a brand new propeller and tooling needed, with custom specifications if necessary. High quality propeller castings are produced in Michigan Wheel special alloys by rigorously controlling the sand molding and metal melting processes. Propeller finishing is done by CNC high speed machining and experienced hand craftsmanship.

Modern, high quality, and specially designed equipment is used throughout the machining and finishing processes of Michigan Propellers. Through every step of the propeller manufacturing process, a variety of modern inspection equipment is used to carefully measure aspects of pitch, spacing and track. All propellers receive a final inspection to insure complete compliance with Michigan Wheel's high tolerance specifications.

For decades, propeller repair facilities throughout North America, Europe, and other areas of the world have worked on Michigan Propellers. Authorized repair facilities have extensive knowledge on Michigan Wheel Marine's propeller designs and are experts at reconditioning and repair of Michigan Wheel Propellers. For your propeller service, be sure that the shop you choose is Michigan Wheel authorized; contact Michigan Wheel Marine for the location nearest you.

Photo Courtesy of Westport Yachts

Photo Courtesy of Trinity Yachts LLC



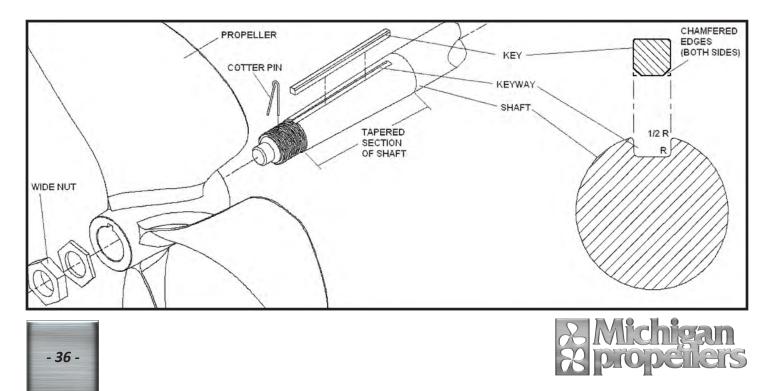
Propeller Terms & Definitions

NO. 1.	TERM Diameter	DEFINITION The diameter of the imaginary circle scribed by the blade tips as the propeller rotates.
2.	Radius	The distance from the axis of rotation to the blade tip. The radius multiplied by two is equal to the diameter.
3.	Blade Face	Pressure side; Pitch side. Aft side of the blade (surface facing the stern).
4.	Blade Back	Suction side. Forward side of the blade (surface facing the bow).
5.	Leading Edge	The edge of the propeller blade adjacent to the forward end of the hub. When viewing the propeller from astern, this edge is furthest away. The leading edge leads into the flow when providing forward thrust.
6.	Trailing Edge	The edge of the propeller adjacent to the aft end of the hub. When viewing the propeller from astern, this edge is closest. The trailing edge retreats from the flow when providing forward thrust.
Ź, ⁶ , ,	Blade Number	Equal to the number of blades on the propeller.
8.	Blade Tip	Maximum reach of the blade from the center of the hub. Separates the leading and trailing edges.
9.	Hub	Solid cylinder located at the center of the propeller. Bored to accommodate the engine shaft. Hub shapes include cylindrical, conical, radius & barreled.
10.	Blade Root	Fillet area. The region of transition from the blade surfaces and edges to the hub periphery. The area where the blade attaches to the hub.
11.	Rotation	When viewed from the stern (facing forward): Right-Hand propellers rotate clockwise to provide forward thrust. Left-Hand propellers rotate counter-clockwise to provide forward thrust. (Right-Hand shown.)
12.	Pitch	The linear distance that a propeller would move in one revolution with no slippage.
13.	Cylindical Section	A cross section of a blade cut by a circular cylinder whose centerline is the propeller axis of rotation.
14.	Pitch Reference Line	Reference line used to establish the geometric pitch angle for the section. This line may pass through the leading and trailing edges of the section and may be equivalent to the chord line.
15.	Geometric Pitch Angle	The angle between the pitch reference line and a line perpendicular to the propeller axis of rotation.
16.	Controllable Pitch Propeller	The propeller blades mount separately to the hub, each on an axis of rotation, allowing a change of pitch in the blades and thus the propeller.
17.	Fixed Pitch Propeller	The propeller blades are permanently mounted and do not allow a change in the propeller pitch.
18.	Constant Pitch Propeller	The propeller blades have the same value of pitch from root to tip and from leading edge to trailing edge.
19.	Variable Pitch Propeller	The propeller blades have sections designed with varying values of local face pitch
	William Million	to pitch.
20.	Rake	The fore or aft slant of a blade with respect to a line perpendicular to the propeller axis of rotation.
20a.	Aft Rake	Positive rake. Blade slants toward aft end of hub.
20b.	Forward Rake	Negative rake. Blade slants towards forward end of hub.
21.	Track	The absolute difference of the actual individual blade height distributions to the other blade height distributions. Always a positive value and represents the spread between individual blade height distributions.
22.	Skew	The transverse sweeping of a blade such that viewing the blades from fore or aft shows an asymmetrical shape.
22a.	Aft Skew	Positive skew. Blade sweep in direction opposite of rotation.
22b.	Forward Skew	Negative skew. Blade sweep in same direction as rotation.
23.	Cup	Small radius of curvature located on the trailing edge of blade.

INBOARD PROPELLER INSTALLATION PROCEDURES

- 1. Push propeller snugly onto shaft taper WITHOUT key in either keyway (propeller or shaft).
- 2. Make sure the propeller is snug and there is no side to side movement by gently moving propeller back and forth.
- 3. Make a line on the shaft with a non-graphite marker at the forward end of the propeller where it stops up against the shaft taper.
- 4. Remove propeller.
- 5. Put key into keyway on shaft taper with radiused or chamfered corners (down) in shaft keyway

(if propeller shaft keyway has radiused corners.)

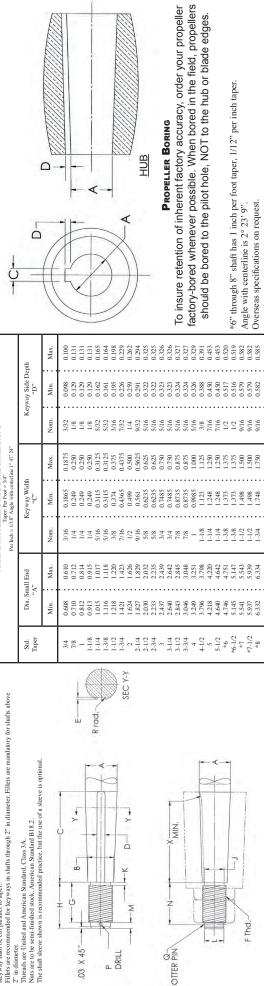

- 6. Put propeller onto shaft taper.
- 7. Check to see that the propeller moves back to the forward line made in Step 3. If it does, skip to Step 8. If not, perform the following:
 - a. Remove propeller from shaft.
 - b. Place a file on a flat surface area or work bench.
 - c. Run opposite end of chamfered key back and forth over file (to remove any burrs) with a downward pressure on key until side being filed is clean.
 - d. Install cleaned key in shaft keyway with chamfered corner side down in shaft (the cleaned, filed side up in keyway).
 - e. Replace the propeller on the shaft and fit snugly on taper. Check to see if it reaches the line made as in Step 7. If it does not line up, repeat Steps 7a through 7e.

Note: A vise can be used to hold key and then filed, but care must be taken not to tighten too much, causing burrs and irregularities on key.

8. When propeller hub moves to correct position, install propeller nut on shaft and torque to seat

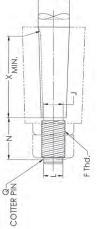
the propeller. Install the torque jam nut also, if your shaft is so equipped.

9. Install cotter pin at end of the shaft.



MARINE F DIMENSIONS

Keyway Length 1-1/2 1-25/32 2-1/8 2-1/8 2-13/16 3-3/16 3-1/2 4-7/32 4-15/16 5-5/8 6-3/32 6-21/32 7-11/32 × l amb Thick 1-1/8 5/16 3/8 7/16 7/16 1/2 9/16 5/8 3/4 7/8 ≥ 1-3/4 1-3/4 2 2-1/4 Nuts (iv) Plain Thick I-1/8 1-1/4 5/8 3/4 3/4 1 - 8 1-1/8 - 7 1-1/4 - 7 1-1/2 - 6 1-3/4 - 5 1-3/4 - 5 2 - 4-1/2 2 25 - 4.5 3/4 - 10 7/8 - 9 11 13 Size 5/8 - 3/4 -Length 2-1/4 2-1/4 2-1/2 $\begin{array}{c} 1-1/4\\ 1-1/2\\ 1-1/2\\ 1-3/4\\ 1-3/4\\ 2\end{array}$ 22 Cotter-Pin Nom Dia 5/32 5/32 3/16 3/16 1/8 1/42 2 (Drill)P 7/64 7/64 7/64 9/64 11/64 11/64 11/64 13/64 13/64 9/64 9/64 Cotter-Pin Hole 1-23/32 1-29/32 2-3/32 2-23/64 2-47/64 3-9/64 3-9/64 3-41/64 4-1/64 1-9/64 1-21/64 1-33/64 1-33/64 z Length of Pin End 1/4 1/4 5/16 5/16 3/8 7/18 1/2 1/2 2222 Σ Dia. of Pin End 1-3/8 1-7/16 1-11/16 1-15/16 1 1-1/4 3/8 7/16 1/2 1/2 5/8 3/4 7/8 1/8 1/8 3/16 3/16 3/16 3/16 3/16 1/4 1/4 8/8/8/ м Undercut 1-3/8 1-7/16 1-11/16 1-15/16 19/32 23/32 13/16 13/16 29/32 1-1/32 1-1/4 25/64 31/64 19/32 Ext. Beyond taper 2-1/4 2-3/4 3-1/8 3-1/2 3-1/2 4 4-3/8 1-5/16 1-1/2 1-3/4 1-3/4 Η End of Taper to End of Thread 1-7/16 1-5/8 1-13/16 2 2-1/4 2-5/8 1-1/16 1-1/4 1-7/16 3-1/2 3-1/2 3-1/2 Ü 4-1/2 Tpi n 12 [iii] 1-1/8 1-1/4 1-1/2 1-3/4 1-3/4 2 2-1/4 Dia 5/8 3/4 7/8 Keyway Fillet Radius (ii) 1/32 1/132 1/16 1/16 1/16 1/16 3/32 3/32 3/32 ¥ 0.284 0.315 0.316 0.316 0.097 0.127 0.127 0.127 $\begin{array}{c} 0.160\\ 0.160\\ 0.192\\ 0.222\\ 0.254\end{array}$ Max Keyway Side Depth (i) 0.281 0.312 0.313 0.311 0.095 0.125 0.125 $\begin{array}{c} 0.125\\ 0.157\\ 0.157\\ 0.157\\ 0.189\\ 0.219\\ 0.251\\ 0.251 \end{array}$ ш Min Nom 3/32 1/8 1/8 1/8 5/32 5/32 3/16 7/32 1/4 9/32 5/16 5/16 5/16 0.5625 0.625 0.625 0.750 $\begin{array}{c} 0.250\\ 0.3125\\ 0.3125\\ 0.375\\ 0.4375\end{array}$ 0.1875 0.250 0.250 0.500 Мах Keyway Width 0.249 0.3115 0.3115 0.374 0.4365 0.4365 0.5610 0.6235 0.6235 0.7485 0.1865 0.249 0.249 Ω Min Nom 3/16 1/4 1/4 1/4 5/16 5/16 3/8 3/8 7/16 1/2 9/16 5/8 5/8 3/4 Taper Length 3-1/8 3-1/2 3-7/8 4-1/4 5-3/4 2 2-3/8 2-3/4 6-1/2 7-1/4 7-7/8 8-5/8 U 1.845 2.048 2.259 2.462 0.626 0.728 0.829 $\begin{array}{c} 0.931\\ 1.032\\ 1.134\\ 1.235\\ 1.439\\ 1.642\\ 1.642 \end{array}$ Max. Diameter Small End $\begin{array}{c} 0.929 \\ 1.030 \\ 1.132 \\ 1.233 \\ 1.437 \\ 1.640 \end{array}$ 1.843 2.046 2.254 2.460 Min. 0.624 0.726 0.827 Nom Shaft Diameter $\begin{array}{c} 3.4\\ 7.8\\ 7.8\\ 1\\ 1\\ 1-1/4\\ 1-1/8\\ 1-3/8\\ 1-3/4\\ 1-3/4\\ 2-3/4\\ 2-3/4\\ 2-3/4 \end{array}$ R


DIMENSIONS OF SHAFTS FROM 3-1/4 TO 8 INCHES IN DIAMETER

PF	ROPE	EL	LE	RS	SHAF	т Ег	ND
	Key- way Length		Х	8-1/2 9-1/4 10	10-1/2 9-5/8 10-7/8 12-1/8 13-1/4	14-3/8 15-5/8 16-7/8 18-1/8	
	Clear- ance		Z	3/8 3/8 3/8	3/8 1/2 1/2 1/2 1/2 1/2	2222	
	Drive		Max	3.872 4.122 4.371	4.621 5.245 5.995 6.494 6.994	7.494 8.120 8.619 9.243	
	Sleeve Drive (v)	n	Min	3.870 4.120 4.369	4.619 5.243 5.993 6.492 6.992	7.492 8.117 8.616 9.240	
		w	Jamb Thick	1-1/2 1-1/2 1-5/8	1-3/4 1-7/8 2-1/8 2-1/4 2-1/4	2-1/2 2-3/4 3-1/8	
	Nuts	т	Plain : Thick :	2-1/2 2-1/2 2-3/4	3 3-1/4 3-3/4 4-1/4	4-1/2 5 5-1/2 5-3/4	
			Size	2-1/2 - 4 2-1/2 - 4 2-3/4 - 4	3 - 4 3-1/4 - 4 3-3/4 - 4 4 - 4 4-1/4 - 4		
	Cotter-Pin		Length	3 2- 3 2- 3-1/2 2-	 	4 v v	ļ
		0	Nom : Dia : I	3/8 3/8 3/8	3/8		T
<u>ב</u>	ole		P P	3/8 3/8 3/8	3/8		
	Cotter-Pin Hole	••••		4-37/64 4-37/64 4-61/64	5-21/64 - - -		
	Length of Pin End		M	3/4 4 3/4 4 3/4 4	3/4 3/4 3/4 1 1		
-	Dia. of Pin End		L	2-1/8 2-1/8 2-3/8	2-1/2 2-3/4 3-1/4 3-1/2 3-7/8	4-3/8 4-7/8 5-1/8 5-3/8	IONS
) - t	tn		K	3/8 3/8 3/8	3/8 3/8 3/8 1/2	22222	E DIMENSI e 1° 47' 24"
	Undercut	••••	······	2-1/8 2-1/8 2-3/8	2-1/2 2-3/4 3-1/4 3-1/2 3-7/8	4-3/8 4-7/8 5-1/8 5-3/8	LLERS HUB BOR laper. Per Foot = 3/4" 8" Angle with centerlin
	Ext. Beyond taper		Н	5-1/8 5-1/8 5-1/2	5-7/8 6-3/8 7-1/8 7-3/4 8-1/2	9-1/4 10 10-3/8 10-3/4	UE PROPELLERS HUB BORE DIMEN Taper. Per Foot = 3.4" Per fach = 1/18" Angle with centerline 1° 47' 24"
2	End of Taper to End of Thread		Ð	4 3/8 4 3/8 4 3/4	5-1/8 5-5/8 6-3/8 6-3/4 7-1/2	8-1/4 9 9-3/8 9-3/4	MARINE PROPELLARS HUB BORE DIMENSIONS Taper Per Fool 3.4" Per fiede 1/18" Angle with centering 1° 47" 24"
5	ad		Tpi	444	44444	4444	
5	Thread	н	Dia	2-1/2 2-1/2 2-3/4	3 3-1/4 3-3/4 4 4 4 4	4-1/2 5 5-1/2 5-3/4	
	Key- way Fillet Radius		R	1/8 1/8 1/8	1/8 5/32 3/16 3/16 7/32	7/32 1/4 1/4	
	epth		Max	0.314 0.313 0.313	0.312 0.376 0.437 0.438 0.496	0.497 0.558 0.559 0.556	ove
	Keyway Side Depth	Е	Min	0.311 0.310 0.310	0.309 0.373 0.434 0.435 0.493	0.494 0.555 0.556 0.553	' 9''. for shafts al
ב	Key		Nom	5/16 5/16 5/16	5/16 3/8 7/16 1/2 1/2	1/2 9/16 9/16 9/16	line is 2° 23 e mandatory
	æ		Max	0.750 0.875 0.875	1.000 1.125 1.250 1.250 1.375	1.375 1.500 1.500 1.750	with center er. Fillets are
	Keyway Width	D	Min	0.7485 0.8735 0.8735	0.9985 1.123 1.248 1.248 1.373	1.373 1.498 1.498 1.748	taper. Angle " in diamete
	*		Nom	3/4 7/8 7/8	1 1-1/8 1-1/4 1-1/4 1-3/8	1-3/8 1-1/2 1-1/2 1-3/4	2" per inch ts through 2
	Taper Length		С	9-3/8 10-1/8 10-7/8	11-5/8 10-3/4 12 13-1/4 14-1/2	15-3/4 17 18-1/4 19-1/2	ot taper, 1/1 aper. ways in shaf
	Diameter Small End	В	Max.	2.665 2.868 3.071	3.274 3.829 4.251 4.673 4.793	5.189 5.584 5.980 6.376	inch per fo parallel to t ded for key
	Diar Smal	-	Min.	2.663 2.866 3.069	3.272 3.827 4.249 4.671 4.791	5.187 5.582 5.978 6.374	" shaft has 1 shall be cut e recommen
	Nom Shaft Diameter	_	A	3-1/4 3-1/2 3-3/4	4 4 5 5 8 *6	*6-1/2 *7 *7_1/2 *8	 * 6" through 8" shaft has 1 inch per foot taper, 1/12" per inch tapet. Angle with centerline is 2° 23' 9". (i) Keyway shall be cut parallel to apper. (ii) Flets are recommended for keyways in shafts through 2" in diameter. Fillets are mandatory for shafts above 7" Fillets are recommended for keyways.
							·* 88

APPROVED S.A.E. STANDARD DIMENSIONS FOR SHAFTS 3/4 TO 3 INCHES IN DIAMETER

* 7 Ó Z X 45° P - DRILL 03

PROP-IT-RIGHT ANALYSIS

Type of Analysis	: New Construction	Evaluation	Repower	Name:						
	VESSEL INFOR			Company:						
Manufacturer:				Address:						
				City/State:						
				Zip/Country:						
	UWork/Commercial	Towing	Pleasure	Phone:						
	Semi-Displacement	Displacement		Fax:						
Bottom Design:	Open	Tunnel	Docket	E-mail:						
Hull Material:	Fiberglass	U Wood	Aluminum	Date:						
1. Vessel Da	ta									
Overall Length:		Loaded Weight:		Expec	ted Top Speed:					
Waterline Length:	:	Beam:		Draft:						
		I Engine Data	Must Be Co							
2. Current o	r New Engine Data	*								
Manufacturer:		Model:		Year:						
Maximum Engine	Rating: Brake _	HP @_	RPM	or Shaft	HP @	RPM				
Gear Reduction F	Ratio::1	Fuel Type:	Gas	Diesel	Other					
Number of Engines: Single Twin Triple Other										
If no propeller size or performance data available, section 1 must be completed in detail.										
Current Performance: Full Throttle (Wide-open) Engine RPM RPM (Actual tachometer reading)										
	Full Throttle (Wide-c	open) Vessel Speed	db	/IPH 🛛 Knots (/	Actual speedom	eter/GPS reading)				
* If re-power. fill in t 3. Current P	he above with NEW engine da ropeller Data	ata. Refer to the Sect	tion 3 for current pro	peller data and Sec	tion 4 for OLD end	gine information.				
Manufacturer:	Model	/Style:	Materia	l: 🗅 Bronze 🕻	🗅 Nibral 🗖 Sta	inless Steel				
Propeller Size:	Diameter x	Pitch	Number of Blac	des:	_					
	Shaft t Shaft:	um Propeller Diam OR o Hull Distance: SAE D Metric S	D = Size:		à	Rotation: Check one or both. Viewed from behind the boat.				
4. Re-power	Data (Old Engine Info	rmation)								
Manufacturer: _		Model:		Year:						
Maximum Engine	Rating: Brake	HP @	RPM or Shaft	HP (@F	RPM				
Gear Reduction F	Ratio::1	Fuel Type:	🗅 Gas	Diesel	□ Other					
Number of Engine	es: 🛛 Single	🗅 Twin	Triple	Other						
Old Performance:	: Full Throttle (Wide-c Full Throttle (Wide-c					GPS reading)				
5. Vessel/Pro	opeller/Nozzle Cerl Lloyds DNV	tification Req Other			Write in your dir A.					
Propeller Applicat	tion: Dpen	Nozzle			C D					
Comments: Note:	The propeller suggestion ca	n only be as accurat	te as the informatio	on that you provid	e.					

1501 Buchanan Ave. SW • Grand Rapids, MI 49507 Phone: 616-452-6941 • Fax: 616-247-0227 • E-mail: info@miwheel.com • Website: www.miwheel.com

- 38 -

ALSO AVAILABLE FROM MICHIGAN WHEEL

FOR MORE INFORMATION, VISIST WWW.MIWHEEL.COM.

HIGH PERFORMANCE WATER-LUBRICATED BEARINGS

High quality rubber sleeved bearings designed for marine and industrial applications, with tolerance suited for American shaft and strut standards.

www.miwheel.com/propellers/inboard/aqualube-bearings

ECONOMICALLY ADVANTAGEOUS STANDARD SERIES

Globally sourced, economically advantageous standard series propeller line, manufactured to Michigan Wheel tolerance and hub dimensional standards.

www.miwheel.com/propellers/inboard/michigan-propellers

COMPUTERIZED 3D PROP MEASUREMENT DEVICE

Provides absolute recognition of propeller condition and extremely precise 3D data, including measurements of: pitch; rake; track; spacing; geometry and camber of any propeller.

Photo Credits: Page 4-5 courtesy of Hatteras Yachts; Page 6 courtesy of Tiara Yachts; Page 7 (left to right) courtesy of Sea Ray Corporation, Tiara Yachts, Silverton Marine Corporation; Page 8 courtesy of Silverton Marine Corporation; Page 12 courtesy of Breaux Brothers; Page 18-19 courtesy of Westport Yachts; Page 21 courtesy of Westport Yachts; Page 22 courtesy of Tribute Performance Boats; Page 23 courtesy of Tiara Yachts; Page 24 courtesy of Trinity Yachts LLC; Page 26-27 courtesy of Sea Ray Corporation; Page 33 (top to bottom) courtesy of Westport Yachts; Trinity Yachts LLC

Michigan Wheel Marine

World Headquarters 1501 Buchanan Avenue Southwest Grand Rapids, MI 49507 United States

> Toll-Free: 1-800-369-4335 Phone: 1-616-452-6941 Fax: 1-616-247-0227

> > info@miwheel.com www.miwheel.com

Europe Headquarters Unit C1 B, Pottery Road Newton Abbot, Devon TQ12 3BN United Kingdom

> Phone: +44 1626 351723 Fax: +44 1626 351724

sales@miwheel-europe.com www.miwheel-europe.com

Michigan Wheel Marine 🆘

Middle East • Africa • Asia Headquarters P.O. Box 54805, DY-1, Show Room No. 7 Al Jadaf Ship Docking Yard, Dubai United Arab Emirates

> Phone: +971 4 3243867 Fax: +971 4 3243868

sales@miwheel-meaa.com www.miwheel-meaa.com

© 2012 Michigan Wheel Marine Printed in the USA. January 2012 All Rights Reserved.

PART NUMBER 99022512